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Technical Summary 
The goal of the En-gauging Architectures project was to create the infrastructure to design and 
deploy gauges on real distributed systems running on commercial platforms, to monitor their 
architecture and measure their performance.  This dynamic system information is made available 
to a wide variety of subscribers both automated and human, and used to validate performance, 
resource requirements, and other selected service qualities and to augment the systems’ 
robustness and responsiveness.   

Early computing applications were so starved for memory and precious processor time that every 
detail used in their construction was “compiled away” if it did not directly affect functionality; in 
fact, such systems performed well in only very tightly-constrained contexts.  Modern systems, 
lacking the extreme resource constraints of old, need not be as highly tuned to the precise usage 
context, thereby retaining the potential for robustness and adaptability.  Modern systems benefit 
from two adaptive technologies: (1) the ability to compose systems from reusable modules 
developed and compiled separately and (2) the ability to distribute computing processes onto 
autonomous computing nodes.  Although these technologies enable the potential to adapt 
performance to widely varying contexts, much of the information important for such performance 
adaptation is still “compiled out” of modern systems. 

Fortunately, determining when and how to adapt a running system to varying configurations and 
performance demands – the “Quality of Service (QoS) demands” – can be separated from system 
functionality.  To obtain such information it is necessary to model a system’s nominal behavior 
and compare it to its actual behavior for the system’s current configuration.  While these models 
are by nature incomplete, they are adequate for validating and tuning performance.  Whenever the 
system deviates from the model, either the system must be reconfigured to achieve its QoS 
demands or the resources reapportioned to balance those demands.  Modeling the system’s 
nominal behavior enables these validations and adaptations to be separated from the system’s 
functionality and to be supported by an external infrastructure. 

The En-gauging Architectures project built such a validation and adaptation infrastructure by 
developing and deploying the gauges that track the system’s dynamic architecture and react to its 
performance characteristics.  Our experience with the Acme architecture description language and 
its Instrumented Connector technology (both developed under DARPA’s Evolutionary Design of 
Complex Software (EDCS) program) were the foundation of the design to monitor the actual run-
time architecture of a system, to reify it into an architecture model, and to publish event 
notifications to “subscribers” interested in such changes to the architecture.  Such subscribers 
comprise analyzers to determine whether dynamic system constraints are satisfied, simulators to 
establish the system’s nominal behavior benchmark, trackers to respond to differences between 
nominal and actual, and even GUI animators, potentially evoking a human response to redirect 
system resources.  

We also built on our expertise in integrating DARPA’s Quorem QoS Condition Service (QCS), 
and our Instrumented Connector technology, to provide the infrastructure that enables application 
designers to design and deploy the gauges needed to measure and validate the running system’s 
performance. Using our Composability Framework Services technology, application engineers 
were able to decide how and when to use this performance and configuration information for 
adaptation to affect some QoS demands.  In point of fact, these QoS demands were reliability and 
safety demands in the examples to which the technology was applied. 
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Although the system we designed was adequate for hand crafting probes and architecture-based 
gauges for simulating and displaying the state of a running architecture, the technology never 
matured enough to be deployable by anyone other than ourselves – too much expertise in the 
intricacies of our PowerPoint Design Editor and the MatLab environment (used for simulation 
description) was required.  Our plan for a follow-on Dynamic Assembly for Systems 
Adaptability, Dependability, and Assurance (DASADA) Phase II project was to ameliorate this 
problem considerably, but the follow-on project never took place.  Research towards the proposal 
for that follow-on led to the notion of an externalized infrastructure for the monitoring and 
maintenance of self-healing properties of running systems, systems not designed specifically for 
being monitored and performance-enhanced.  Hence, in the following description in addition to 
describing the technology we developed for the support of En-gauging Architectures, we describe 
our role in the DASADA community consensus proposal for this externalized infrastructure. 

Approach 
To summarize: The goals of the En-gauging Architectures project were: 

(1) To provide community infrastructure that allows programmers to dynamically place probes 
and gauges into running systems; 

(2) To provide dynamic architecture modeling support, specifically for architecture gauges and 
reconfiguration.   

In support of (1) our approach was to abstract the experience gained from the Instrumented 
Connector technology, which allows complex COTS systems running on the Windows platform 
to be probed [Balzer and Goldman], to identify a common run-time infrastructure for a variety of 
such probe technologies and the facilities needed for those probes to provide inputs to a broad set 
of gauges.  Several DASADA contractors tested the viability of that design by implementing it 
for their own probe technologies.  

In support of (2) we developed a COTS infrastructure for analyzing and manipulating architecture 
models expressed in the Acme architecture description language.  We used PowerPoint as an 
Acme Design Editor that monitors the actual run-time architecture of a system, reifies it into an 
Acme architecture model, and animates its dynamic behavior through architecture gauges 
reflected on the screen as a PowerPoint presentation.  Architectural change event notifications are 
published to "subscribers" interested in such changes to the architecture.  Such subscribers can 
analyze the architecture to determine whether dynamic system constraints are satisfied, simulate 
it to establish the system's nominal behavior, track its actual behavior to respond to differences 
between nominal and actual, or display architectural properties (through an architecture gauge) to 
evoke a human or automated response to redirect system resources. 

Below we describe the technology we developed in support of each of these activities as well as a 
language design for describing architecture dynamism and the design considerations needed to 
form a DASADA community consensus on how architecturally significant events should be 
handled.  

Technical Result: Probe Run-Time Infrastructure 
 

Background  
The main design goals for the Probe Run-Time Infrastructure [Balzer ‘01a] were to provide 
Gauges with a common interface for collecting the probe data they need and (2) to remain 
independent of the probe technology employed and the location of the system being probed. The 
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first is handled through common APIs and infrastructure described below, while the second is 
handled by resting the Probe Run-Time Infrastructure on the Siena Wide-Area Event Notification 
Service.  

The Probe Run-Time Infrastructure is designed to support a wide variety of probe technologies 
through a common set of interfaces and infrastructure. The reason for this diversity is that no 
single probe technology can instrument all run-time behavior of all systems (Legacy, COTS, or 
custom developed) on all platforms. To gain that coverage different probe technologies will have 
to be employed for different systems and platforms, and in some cases multiple probe 
technologies will have to be employed on a single system.  

In addition to these language and platform dependencies, probe technologies differ on when and 
how they are incorporated (or bound) into a running system or its environment. Some of these 
probe technologies are bound to a system during the building of that system (e.g. during 
compilation or during the composition of a load module), some are bound during the loading of a 
system, some are bound during execution, and some are bound to its environment during its 
execution.  

To handle these differences, the Probe Run-Time Infrastructure was designed to allow probes to 
be dynamically deployed (probe code situated at a host for subsequent attachment to specific 
systems at that site), installed (attached to a specific target system), and activated (probes attached 
to a specific target system or environment turned on).  To the extent that a particular probe 
technology doesn't support such dynamism, the "adaptor" code that couples it to the Run-Time 
Infrastructure must either ignore the command (because it has already been accomplished 
statically) or encode it into an action it can dynamically take (such as activating and deactivating 
statically placed probes by dynamically setting and unsetting a variable used as a guard on those 
probes).  

Design  
The Probe Infrastructure rests on, and is described in terms of, the Siena Wide-Area Event 
Notification Service so that inter-machine transport of commands and data (in the form of Siena 
events) is transparently handled by Siena.  

These wide-area events may be translated into, and out of, a local intra-host standard (such as 
CORBA or DCOM) by a platform-specific Gateway to improve Intra-host performance. This 
optional Gateway would translate from the inter-host event API described here into the intra-host, 
platform-specific API and vise-versa.  

A probe is an individual sensor attached to, or associated with (as a monitor of), a running 
program. This attachment or association can occur either statically or dynamically.  It can sense 
some portion of the program's, or its environment's, execution and make that data available by 
issuing events.  Gauges are the primary consumer of this low-level probe data.  They collect and 
aggregate this probe data into measurements (i.e. values along some dimension).  

Where and how it is attached to a running program or its environment is part of the probe 
specification. For some probe technologies this placement information may be implicit because it 
is predefined or implied by the probe definition.  For others it may be explicitly kept separate 
from the probe definition and expressed in terms of either the program's architecture or its 
implementation.  If the probe's placement is expressed in terms of the program's architecture and 
specified in ACME, an Architecture Name Server will be available to provide a mapping from 
these ACME architecture specifications to the running implementation of the system.  
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The events1 issued by probes are either point events with an event name and an arbitrary set of 
parameters or a duration event with an event name, an event-start or event-end indicator, and an 
arbitrary set of parameters (i.e. duration events are modeled as a pair of point events indicating 
the start and end of the duration event).  

Individual probes are organized into coordinated groups called configurations that are operated on 
as a unit.  These probe configurations can be deployed to a site, installed on a running instance of 
a system at that site, activated and deactivated during execution, uninstalled from a running 
system, and undeployed from a site.  

Probe configurations can also be queried to list the set of events they are capable of generating, 
and be given a directive set of parameters that influence what data they collect and report. Both 
the directive set of parameters and the influence those parameters have on the probes are specific 
to a particular probe configuration.  

APIs  
All APIs are described as events so that probes can be remotely controlled and the data they 
produce remotely consumed.  The syntax shown below is for publishing the event (using Siena's 
event publication facility).  Those clients who register interest in that event receive each 
published event.  

Deploy(Probe-Configuration-Name, Host, Probe-Configuration-Module)   

The Probe-Configuration-Module defining the named Probe-Configuration-Name becomes a 
probe configuration on the named Host. The module contains all the code and declarations 
needed to construct instances of the probe configuration. The Adaptor is responsible for 
performing that construction when the probe configuration is Installed (see below) on a running 
system or its environment. The effect of a Deploy is persistent on a Host (i.e. no need to redeploy 
if host is rebooted).  Only an UnDeploy (see below) removes this persistent Probe-Configuration-
Module definition from Host. In keeping with the design conventions of Siena, the Deploy event 
will contain a URL for the Probe-Configuration-Module and point-to-point protocols will be used 
by the recipient to obtain the possibly bulky probe configuration module.  

Install(Probe-Configuration-Name, Host, System-Spec)   

The already deployed Probe-Configuration-Name on Host is incorporated into the specified 
system or its environment. The probes defined in the probe configuration are initialized to their 
deactivated state (i.e. not sensing any execution behavior). The System-Spec can specify an 
already running system, a named system to be run, the next execution of a named system, or all 
future executions of a named system. If an immediate or future execution of the named system is 
specified, then Probe-Configuration-Name is incorporated into that System when it is started on 
Host (this enables probes to sense startup behavior and corresponds to how statically placed 
probes would be deployed and installed) and a Installed event identifying that execution instance 
is signaled. These system execution instances (SystemExID) are persistently unique on a 
particular machine and can be used to identify that execution instance and all Sensed events 
generated by its probes. To facilitate interoperation among different probe technologies on a 
machine, these system execution instances should be generated by the platform specific Gateway 
rather than by an individual Adaptor.  

                                                      
1The event structure employed was very simple and in our uses, customized to the application at 
hand.  A community-wide standard was a discussion topic at several working group meetings 
during DASADA PI meetings.  This was to be finalized in the Phase II externalized infrastructure 
that was never funded. 
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 It is up to individual probe technologies to determine whether multiple probe configurations 
(defined in the same probe technology) can be installed on a single system without interfering 
with each other. Those that can't should issue an exception when more than one Install is issued 
for an execution instance.  

Activate(Probe-Configuration-Name, Host, System-Spec)  

 The already installed Probe-Configuration-Name on System on Host is activated so that it senses 
behavior in the running system. In this activated state, the probes may issue Sense events for 
some subset of the behavior they observe. If an Activation event, as well as an Install event, is 
received before the named System is running, then Probe-Configuration-Name is both 
incorporated into that System when it is started on Host and immediately activated.  

Sensed(Probe-Configuration-Name, Host, SystemExID, Event-Name, Event-Type,  Data1 ... 
DataN)   

Probes in the activated state may issue Sensed events that identify some subset of the behavior 
they observe. The Event-Name identifies the type of behavior observed and Data1 through DataN 
are values detailing that type of behavior.  Event-Type is either Start, End, or Point which specify 
respectively the start of an event interval, the end of an event interval, or the occurrence of a point 
event (i.e. an event with no duration). Probe-Configuration-Name specifies the probe 
configuration that generated the event and SystemExID specifies the particular execution instance 
running on Host on which that probe configuration was installed.  

Query-Sensed(Probe-Configuration-Name, Host)   

Requests a list of all of the Event-Names that the named Probe-Configuration-Name can generate 
while it is activated. This request is answered through a Generate-Sensed event. As this is a static 
property of the probe configuration itself, no execution instance need be specified.  

Generate-Sensed(Probe-Configuration-Name, Host, Event-Name1 ... Event-NameN)   

This event is issued in response to a Query-Sensed event for the list of all Event-Names that the 
named Probe-Configuration-Name can generate while it is activated. This list of Event-Names is 
Event-Name1 through Event-NameN.  

Focus(Probe-Configuration-Name, Host, SystemExID, Parameter1 ... ParameterN)   

Parameter1 through ParameterN are passed to the already installed Probe-Configuration-Name on 
execution instance SystemExID on Host to "focus" its sensors as specified by the parameters. 
How it interprets these parameters is entirely probe configuration specific.  

Deactivate(Probe-Configuration-Name, Host, System)   

The already installed Probe-Configuration-Name on execution instance SystemExID on Host is 
deactivated so that it stops sensing behavior in that execution instance. In this deactivated state, 
the probes may not issue any Sensed events.  

Uninstall(Probe-Configuration-Name, Host, SystemExID)  

The Probe-Configuration-Name on Host is removed from execution instance SystemExID or its 
environment. It cannot be uninstalled if it is currently active (i.e. it has been activated more 
recently than deactivated) It can no longer be Activated or Deactivated on that execution instance 
before it is again Installed on that execution instance.  

Undeploy(Probe-Configuration-Name, Host)  
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 The named Probe-Configuration-Name is no longer a defined probe configuration on the named 
Host and can no longer be referred to by that name on the named Host. However, installed 
instances of the Probe-Configuration-Name are unaffected by the Undeploy.  

Adaptor  
A probe technology may not be able to directly issue and respond to the events defining the Probe 
Run-Time Infrastructure APIs. It therefore has an Adaptor that couples the probes defined in that 
technology to the Probe Run-Time Infrastructure.  

The Adaptor on a machine receives all the events passing through the Probe Run-Time 
Infrastructure for the probe configurations on that machine. It converts those events into calls and 
operations in that probe technology.  As an example, it may translate an Active event into the 
setting of a global variable that acts as a guard for probes already in place.  

The Adaptor will also receive any "outputs" generated by these probes and convert them into 
events to be passed through the Probe Run-Time Infrastructure. 

Community Support for Probe Infrastructure 
(See Run-Time-Infrastructure Working Group under the DASADA Community Relationships 
section.)   

Technical Result: An En-gauging Architecture 
Framework 
The framework we designed and implemented for monitoring running systems was demonstrated 
on a showcase program designed and implemented by Teknowledge, a program called “Safe 
Email” [Balzer ‘01b] that protects users from malicious attempts to install worms or viruses into 
the user’s workspace via attachments or other sources.  Although our original framework was not 
developed as a wholly externalized adaptation of the running email program, it is best described 
in the terms of the framework proposed for the DASADA Phase II follow-on. 

Hence, in what follows, the essence of that proposal for the externalized framework is described 
before proceeding to describe the actual program design for monitoring safe email. 

As the DASADA program unfolded, one of our realizations was that Gauge technology is not 
only applicable for maintaining and improving QoS concerns, but also for producing self-healing 
effects.  Hence, along with others from DARPA’s DASADA program we proposed an execution 
infrastructure for so-called self-healing, self-adaptive systems – systems that maintain a particular 
level of healthiness or quality of service (QoS).  This externalized infrastructure does not entail 
any modification of the target system whose health is to be maintained.  It is driven by a 
reflective model of the target system’s operation to determine what aspects can be changed to 
effect repair.   

The infrastructure can be thought of as a specific architectural “harness” to facilitate dynamic 
system reconfiguration, as required for these “self-healing” or “self-adaptive.”   Figure 1. An 
Externalized Infrastructure for Self-Healing Systems  illustrates an architectural diagram of an 
externalized infrastructure that can be used to monitor, interpret, analyze, and reconfigure running 
systems.  Essentially a layer of probes is installed into a system just before it starts to run, probes 
that report significant data on a probe event-bus (described in the previous Technical Result 
section).  Gauges translate and interpret this data with respect to models that abstract from the 
implementation, often using an architectural model of the target system to locate logical events.  
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The information from these gauges is transmitted onto the gauge bus where other gauges can 
react and control decisions can be made.  A layer of “effectors” is then invoked to effect changes 
in the target system, either by adapting existing components – perhaps by tweaking parameters – 
or by reconfiguring the system itself. 

This infrastructure was proposed by several members of DARPA’s DASADA community 
[Garlan and Schmerl] [Valleto and Kaiser] [Wile ‘02] where it was only partially developed 
before funding was dropped; however, the probe and gauge interaction protocols were 
standardized [Balzer ‘01a] [Garlan, Schmerl, and Chang] based on Siena event-broadcasting 
middleware [Carzania et al].   

Architectural Modeling 
 
The Target Architectural Model (modeling the “cloud” in Figure 1) plays a key role in the 
infrastructure.  The architectural model essentially establishes the structural vocabulary; each 
layer can rely on the model for understanding its role in the system and the information it is 
responsible for.  To see how events in the physical architecture map to events in the logical, target 
architecture model consider the following scenarios, both ensuing after probes and gauges have 
been placed by the control layer: 

Static Architecture Scenario 
 

• Probes emit Implementation-Level Events (ILEs) like “process D006 opened file 
‘C:\Program Files\log.txt’ for write” or “process E001 used 2021.” 

• Gauges provide interpretations of these events by first determining what logical architectural 
entities are being referred to – here, perhaps a logical application, WinZIP (D006), and another 
logical application, MS PowerPoint  (E001), for example.  This mapping from implementation 
terms (process ids) to logical architectural components must be established in the architectural 
model by the processes that originally set up the system and probes.  The gauges additionally 
interpret implicit information from the probes; for example, perhaps 2021 means port 2021. 

• The gauges are then “read” by the control layer to see if any action should be taken.  For 
example, assume that the ILE for E001 is interpreted as “MS PowerPoint (E001) is attempting 
to access port 2021.”  Furthermore, assume that the control layer has knowledge of good, 
suspicious, and bad events.  For example, it is known that “access to ports 1000-3000 is 
suspicious,” e.g., because normal application operation does not require such access.  In such a 
case, the control layer may decide to ask the user of the application to authorize or deny access 
to port 2021.  The control layer may then communicate the user response to authorize or deny 
the access to the effector layer through an adaptation event (AE). 
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• Then the effector layer will use the architectural model to determine that process E001 needs 
to be adapted – requiring the inverse translation from before, now from logical architecture to 
physical architecture – and determine what implementation-level response corresponds to 
authorize or deny events, e.g., raise an implementation-level “port access failed exception” in 
the latter case. 

Notice that nothing about the architecture itself changed during this scenario; no modules or 
connections were created or destroyed.  Moreover, the repair was affected by a simple parameter 
change to a running module; no new resources were brought to bear.  A similar scenario might 
require dynamic target architecture changes: 

 

Dynamic Architecture Scenario 
 

• Probes emit architecturally significant implementation-level events, such as “process D006 
spawned new process F008 of type MS Word.” 

• Gauges interpret these events and modify the corresponding physical and logical architectural 
models.  Here, perhaps, because F008 was spawned by D006, the system knows that there must 
be a new logical application, MS Word (F008) now and that the logical application WinZIP 
(D006) is the creator (parent) of MS Word (F008).  We call this process identification of 
physical models with pre-defined, logical architecture models.  That is, with dynamic 
architectures, the whole range of possible architectures is pre-specified in a covering 
architecture [10,13]; those elements of the architecture that have been identified with the 
physical architecture are kept track of.  Hence, at any given time, only the identified modules 
and connectors constitute the actual logical architecture. 

• Imagine that some time later an event similar to the one above, “MS Word (F011) is 
attempting to access port 2021” is transmitted by the probes and reported by the gauges.  The 
control layer at this point could issue a user request to authorize/deny this attempt or it could 
change the system’s running architecture by issuing a reconfiguration event to the effector 
layer.  This time perhaps the command issued would be to “replace the MS Word process 
(F011) with another physical application (e.g., MS WordPad, which can read MS Word 
documents but is less subject to 
exploitation by viruses). 

• The effector layer again has to 
map the logical MS Word 
component into the physical 
process F011 and it also has to 
understand how to remove that 
component and substitute a new 
one of type MS WordPad, a 
rather tricky activity in any 
event. 

So there are two separable 
dynamic architecture activities 
here: modeling the dynamic 
architecture as it evolves and 
reconfiguring the architecture via 
the control layer. 
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An Example: Safe 
EMail 
 
The following is a 
reformulation into the 
self-healing harness of 
the running program the 
En-gauging Architectures 
project developed and 
demonstrated.  In effect 
our “Safe Email” 
program [Balzer ‘01b] 
itself constitutes a self-
healing harness for 
repairing the errant 
behavior of processes 
spawned by email 
attachments.  

Figure 2 depicts the 
instantiation of the Safe Email self-healing infrastructure ( Figure 1. An Externalized 
Infrastructure for Self-Healing Systems ) for the email application Microsoft Outlook.  Its 
purpose is to detect and prevent malicious behavior caused by viruses received through email.  
Email viruses are either embedded in the email itself to exploit security weaknesses in MS 
Outlook (e.g., macro viruses) or they are unleashed by attachments opened by unsuspecting users.  

To counter the security threat posed by viruses, three kinds of probes are required, probes for 
observing: 1) the occurrence of events that could be considered “suspicious,” 2) the creation of 
new processes (New PID), and 3) the destruction of existing processes (Old PID).  All three 
probes are based on wrapper technology, where calls to PC Windows-based platforms’ Dynamic 
Link Libraries are intercepted and our code is invoked before (conditionally) invoking the 
original code [Balzer and Goldman], reporting suspicious activity via the probe bus [Balzer ‘01a] 

If a virus exploits a weakness in MS Outlook, then it will engage in suspicious activities that are 
observed through the first type of probe.  The other probes maintain the target architectural model 
to coordinate faults with spawned processes.  When attachments are opened, new processes are 
created to view/execute these attachments (e.g., MS Word or a Web Browser).  Therefore, if a 
virus is embedded in an attachment, the new process, and not MS Outlook, will then engage in 
suspicious activities.  Observing  “suspicious” activities is thus extended to processes spawned by 
MS Outlook (New PID) until they are destroyed (Old PID). 

The “Safe Email” gauge acts as a mediator to collect and translate probe information broadcast on 
the probe bus.  It may combine multiple implementation-level events to produce architecture-
level events that abstract from the implementation.  It may also translate observed information 
with the help of the “Logic Map” gauge to interpret how implementation-level data relates to 
target architectural elements and to record the creation hierarchy of applications.  MS Outlook 
sits at the top of this hierarchy.  When it spawns a process by opening an attachment, a “child 
application” is created to represent the new process along with its type and id.  Since a spawned 
process may spawn yet other processes, the target architecture model supports a tree hierarchy of 
“parent” applications and their “children.”  

Gauges cannot judge whether suspicious activities, caused by MS Outlook or any of its child 
processes, are truly malicious or not.  If a suspicious event is observed the first time (“New 
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Figure 2.  Idealized Safe Email Infrastructure Architecture 
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Danger”) then the control layer displays a warning message (“Display Warning”) to let the user 
decide about the maliciousness of the event (“Query User”).  The user may allow the activity, 
deny it, or kill the application.  The user may also reconfigure the control layer to ignore similar 
events (“Old Danger”) in the future (equivalent to an automatic allow).   

Probes may reside in different processes and on different machines, so the infrastructure can be 
used to monitor multiple email users.  A so-called “Authority” is given access to a GUI showing 
the target architectures with processes decorated by border colors indicating how well behaved 
processes are with respect to producing suspicious activities that the users deny, e.g., red for 
malicious. 

In addition, the architectural elements are simulated in the “Simulate” gauge to determine the 
level of trust of individual applications, based on users’ responses to warnings of suspicious 
activities and to “guilt assessment” imposed on parents of misbehaving child processes [Egyed 
and Wile].  This information is also visualized for each process. 

The authority is allowed to determine that specific processes are misbehaving for enough users 
that subsequent attempts to invoke the suspicious actions should automatically be denied.  “Query 
Authority” uses MailIDs to ensure that previously denied events are denied automatically again if 
they originated from the same email, e.g., even for different users.  

The layer of effectors is invoked to effect changes in the running system.  Effectors may 
“authorize” or “censor” (deny) suspicious events, or may even kill processes. 

 

Harness Problems 
Although we noticed problems in applying the infrastructure to the Safe Email example, we think 
this approach is a feasible way to decouple self-healing aspects of a target system from its 
functionality.  Problems with externalization arise when there is a coupling between an effector 
that corrects a problem and a sensor that detects it, e.g., a sensor detects danger and suspends 
itself, awaiting a decision about how to proceed.  The effector that allows it to proceed is strongly 
coupled, something that cannot be indicated with the infrastructure as it stands.  Similar problems 
concern how to model the user and administrator.  

Nonetheless, we feel the future of this infrastructure will best be to serve as “a template” for 
imposing self-healing systems on applications, as suggested by Jeff Magee [Crane et al].  In fact, 
in the future we intend to design an architectural style that is consistent with the infrastructure 
that allows refined descriptions of the relationships of the sensors, gauges, controllers, and 
effectors.  The choice of which architecture description method to use – infrastructure or style – 
will then depend on the volatility of the infrastructure itself.  

Design Result: an Architecture Meta-Language 
Dynamic evolution concerns arise with considerable variation in time scale.  One may wish to 
constrain how a system can evolve over its development lifecycle.  Laws such as Minsky 
[Minsky] proposes or constraints as in Monroe’s Armani system [Monroe] address such evolution 
concerns.  Another approach to such concerns involves limiting systems’ construction primitives 
to those from appropriate styles, such as in Wright [Allen] and UniCon [Shaw], or embodied by 
the choice to use C2 [Oreizy, Medvidovic, and Taylor].  One may wish to constrain what 
implementations are appropriate; concerns for interface compatibility such as evidenced in SADL 
[Moriconi et al] are then germane.  And finally, one may want to constrain the ability of the 
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architecture to be modified as it is running; languages such as Rapide [Luckham et al] and 
Darwin [Magee and Kramer] emphasize these issues.   

The language AML was designed under this contract to be used to specify the semantics of 
architecture description languages (ADLs).  AML attempts to provide specification constructs 
that can be used to express all of the constraints mentioned above without committing to which 
time scale will be used to enforce them.  It is a very primitive language, having declarations for 
only three constructs: elements, kinds, and relationships.  Each of these constructs may be 
constrained via predicates in temporal logic.  The essence of AML is the ability to specify 
structure and to constrain the dynamic evolution of that structure. 

The full description of AML is presented in an attachment, but to summarize here: software 
architectures are to be represented as a set of elements among which distinguished topological 
relationships are carefully described and constrained.  In fact, these relationships will be time 
varying, or event-based.  This mostly affects the logical framework needed to reason about them. 
In effect, AML is designed to facilitate specification of these concepts only: elements, topological 
relationships, domain-specific relationships on the elements, and temporal constraints, along with 
facilities for organizing and describing these concepts more concisely. 

AML semantics require several different validation and verification activities on the part of its 
users and/or support tools.  In addition to formal proof obligations, one must: 

• Identify the elements of the model with items in the artifact.  (It is assumed that no two 
differently named items be identified with the same artifact.)  

• Ensure that these identified elements satisfy appropriate topological relationships, again 
in the artifact itself.  Specifically, if an element is identified, this usually requires that 
other topologically related elements be identified as well.  

• Ensure that certain closure properties hold in the artifact.  This involves establishing that 
e.g. all of the parts, and only the parts are accounted for that have the part relationships.   

• Establish the non-topological properties.  This is a purely domain-specific activity, and is 
actually the major source of leverage of ADLs. 

The semantics of AML require only a very small part of the predicate calculus along with some 
elementary set theory.  It is our intention that AML be adapted to different logics for different 
analysis purposes.   A good starting ground for such a logic includes simple temporal predicates, 
sometimes and always, conventional quantifiers with typed variables, exists and all, as well as the 
connectives for implies, equivalence, exclusive or, inclusive or, and and. The connectives connect 
potentially negated comparison relations or propositions.  Infix versions of the standard 
comparison relationships should also be included, e.g., <, >, >=, =<, <> and =.   

The structural building block in AML is the relationship.  Over the past 25 years in the Software 
Sciences Division at ISI we have built many languages based on “relational abstraction” wherein 
we model all data access as manipulations of abstract relationships [Feather].  Some of the 
conventions adopted there are brought over into AML.  In AML the relationship declaration is 
used to describe topological relationships among elements and domain relationships between 
elements and other external types, such as integers or strings, or even modules in a programming 
language, for example. 

Naturally, the whole purpose of AML is to specify architecture constraints.  Elements may be 
constrained in two ways: through constraints that are assumed to be true of the element and 
through constraints that should be able to be logically derived as holding.  The constraints that are 
assumed to hold, including the unique identification axiom (that all elements have distinct ids), 
must be validated in the artifact being modeled.  Generally, topological relations will be 
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introduced along with assumptions they require, as with the single parent assumption for the has-
part relationship.  In addition to topological relationships, those that relate different elements of 
the architecture, other interesting relationships include those between architecture elements and 
other models.  In fact, almost all of the power of an ADL stems from its ability to model some 
aspect of the application of the architecture that can be analyzed and reasoned about a priori.   As 
with topological relations, assumptions and definitions of other relationships may be introduced 
explicitly in the context of particular elements by indenting appropriately.  There are several 
benefits to introducing them this way: (1) the scope rules apply, so elements can be referenced 
without giving their full “lineage” (using dot notation); (2) locality will tend to correlate with 
relevance (although one can reference elements freely outside the scope of the assumption); and 
(3) conditional identification of elements can be implicit. 

In AML kinds play the role of both architecture types and architectural styles, introducing and 
restricting new element types.  The word was chosen for its lack of associations in modern 
programming or specification languages.  A kind declaration looks like an element declaration, 
but the closure properties are extended somewhat to provide flexibility when the instances of 
kinds are specified. 

In the introduction to this section, we mentioned that one may wish to constrain how a system can 
evolve in very many parts of its development lifecycle.  Laws such as Minsky proposes [Minsky] 
or constraints as in Monroe’s Armani system [Monroe] address such evolution concerns during 
system specification.  Another approach to such concerns involves limiting systems’ construction 
primitives to those from appropriate styles, such as in Wright [Allen] and UniCon [Shaw], or 
embodied by the choice to use C2 [Taylor].  One may wish to constrain what implementations are 
appropriate; concerns for interface compatibility such as evidenced in Structural Architecture 
Description Languages (SADL) [Moriconi et al] are then germane.  And finally, one may want to 
constrain the ability of the architecture to be modified as it is running; languages such as Rapide 
[Luckham] and Darwin [Magee] emphasize these issues.  Using AML’s specification constructs 
allows one to express all of these constraints without committing to which time scale will be used 
to enforce them.  Each of the above approaches should map readily into AML.  Naturally, 
different logical systems may be necessary.  That is consistent with the philosophy of AML.  If 
more restrictive constraints require more “reflective” capabilities of an ADL than are present 
here, one should seek to regularize them and introduce them into AML.  

The abstractness of the notion of topological and domain relationships may mask the general 
usefulness of this approach.  For example, topological relationships include the obvious part-of, 
port-of, component-of, connector-of, attached-to, etc., but also may be used to represent more 
detail, such as refines-to and binds-to, to represent architecture at a finer level of detail.  Domain 
relationships will include somewhat generic ones such as implemented-by and throughput, but the 
leverage of ADLs is in the richness of the domain relationships for describing events and their 
interactions.  AML simply provides a foundation for relating them to the topological elements of 
an artifact. 

Normally, the existence of a formal “semantics” for a language is simply a confidence-building 
device for its designers.  An interesting consequence of AML semantics is that they can actually 
be useful in realistic settings.  If the topmost element of an architectural description is presumed 
to be identified, there will generally be several other elements that must be identified as well.  If 
these are furthermore assumed to hold, there will still be a residue of assumptions about the 
identification of optional elements and replicated elements that cannot be assumed.  

This residue can be manipulated and used in testing the running architecture for conformance, for 
example, by instrumenting it with probes that detect the identification and perhaps subsequent 
non-identification of elements.  A “shadow architecture” specification – the residue – can then be 
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monitored for compliance.  The Flea system [Naryanaswamy] has been used for such purposes, 
although the residue was concocted in an ad hoc fashion.  In fact, we fleshed this idea out in more 
detail in a paper presented at the Requirements Engineering Conference in 2000 [Wile ‘01a] (see 
attachment).  Moreover, these ideas were incorporated into the Acme language specification and 
reported in [Wile ‘01c] (see attachment).  For more information AML itself is described in more 
detail in [Wile ‘01b] (see attachment). 

Design Result: Synthesis of Dynamic Architecture Event 
Languages 
A variety of architectural modeling tools have been designed and implemented under DARPA’s 
EDCS and DASADA programs with the goal to facilitate dynamic system reconfiguration.  In 
Figure 1 above, we illustrated an architectural diagram of an externalized infrastructure that can 
be used to monitor, interpret, analyze, and reconfigure running systems.  This infrastructure was 
only available piecemeal, but several parts were developed to the extent that it was time to 
standardize some of the interaction protocols to provide leverage to the community developing 
self-aware, self-healing systems.  Notice the importance of the architectural model to this 
diagram.  

Here we focus on the issues involved in designing a protocol for architecturally significant event 
(ASE) description, that is, events that indicate construction or destruction of architectural 
components themselves.  Recall the static and dynamic scenarios above where ASEs were 
described. 

There are three separate protocols in use for describing architecturally significant events (ASEs)2 
in the DASADA community presently.  The xArch/xAcme [Schmerl and Gross] design provides 
events expressed in XML to describe the changes to connectors, components, attachments, etc. 
This formalism is based on a tool support mechanism for Acme [Garlan, Monroe, Wile], called 
AcmeLib [Schmerl].  The formalism actually has extensions to deal with CMU’s proposed gauge 
infrastructure [Garlan, Schmerl, and Chang], but they have been eliminated here as representing a 
somewhat ad hoc, interim solution. 

A second protocol also uses XML to describe sets of architecture changes to an architecture 
expressed using the xADL architecture description language [van der Hoek and Dashofy].  This 
so-called “Diff” formalism is primarily used to describe differences between successive versions 
of architectures [van der Westhuizen and van der Hoek] for version control purposes.   

Finally, our work with the PowerPoint Design Editor [Goldman and Balzer] embodies an ASE 
description language.  This was originally described as COM events but was recently converted 
to call-backs from a PowerPoint add-in.  

Each of these ASE languages is characterized by the abstract syntactic structure of the events 
allowed.  The xAcme/xARCH3 schema comprises create, delete, attach, detach and 
changeProperty events.  Create takes a sequence of additions to be performed in a particular 
context, presumably the system being modeled.  These additions include components, connectors, 
interfaces, sub-architectures, and bindings, as well as a second-order element that is a property 

                                                      
2 Here there is no way to distinguish “implementation level” events from more abstract reporting, 
so the “IL” has been dropped for the rest of the paper. 
3These two XML dialects differ in that Acme’s allows explicit properties on the elements where 
xARCH simply allows normal XML to carry the properties as extra fields. 
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description.  Deletion, on the other hand, just removes the element pointed to.  Attach and detach 
both take sequences of role-port pairs as arguments.  And changeProperty changes the property 
from whatever value it has to the argument value. 

The xADL “Diff” interface is slightly simpler.  Diff starts out with a whole sequence of Add and 
Remove events.  Things that can be added are: components, connectors, links, groups, and type 
descriptions for the first three of these.  Deletion is by reference to the architecture instance 
identifier.  Although typing is not specified at this level in the other two protocols, the simplicity 
of the remainder here arises in part because of the lack of property definitions but primarily 
because one must understand the substructure of the architectural elements to completely 
construct the artifacts.  For example, what a link links is implicit in the definition for link; it is not 
present in the Diff interface itself.  In both other protocols such elements are explicit.  Similarly, 
grouped elements are found within the group, rather than within the Diff interface.  The 
implications of this will be discussed below.  

The Design Editor appears to be somewhat more complex (and primitive) than the other two 
protocols, in that no grouping constructs analogous to XMLs sequences are used except in the 
new Property event.  (The Design Editor allows multiple-valued properties; Acme would 
represent these as set-valued properties.)  Sequences of these events between begin- and end-
transaction events define the grouping instead.  There is a slight disconnect in the nomenclature 
of the Design Editor that makes comparison a bit difficult.  Here, both components and 
connectors are referred to as “shapes;” their classification as to either must either be derived from 
the type structure specification (extraneous to the protocol), or from their roles in the 
OutboundConnect and InboundConnect events.  There is a lot of explicit information given to the 
(new) Shape event.  In particular, the shape’s ID (guaranteed to be unique over all components 
and connectors in any given architecture4), its type, and information relating to whether it is itself 
a sub-architecture (the abstract) parameter and/or its membership in one.  This information is also 
explicitly present in the xAcme/xARCH protocol, but is again implicit in the xADL one. 

The Design Editor restricts connectors to exactly two roles - an inbound and an outbound one - 
and components to ports represented as integers.  (These ports can be named but one cannot 
derive that information from what is passed through the protocol.)  All of the elements of this 
protocol are represented as integers (Longs) except for the names and values of properties.  The 
values are actually strings or integers, but that fact cannot be determined from the weak typing in 
the protocol.  

These apparently simple, apparently similar protocols are different enough to illustrate several 
issues that must be addressed in any synthesis of them into a commonly acceptable ASE.  In 
particular the following stand out: 

• Goals for the protocol.  What belongs in the protocol? 

• Nomenclature issues.  Can we agree on a nomenclature or is a Rosetta Stone appropriate? 

• How many different representations of the events are needed?  Is XML sufficient? 

• How rich should the event language be?  For example, the union of the three languages 
would be a possible language proposal (absurd, but possible).  Or should a core facility 
be extendable, and how? 

• What transaction model should be used?  Explicit begin-end, nested transactions, set of 
changes, sequence of changes, higher-level operators encapsulating sequences - such as 
“change” for “remove and then add.” 

                                                      
4 Technically, any PowerPoint presentation. 
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• How much extraneous information - referred to as implicit information above - is 
appropriate to understand the artifact that the ASEs can be used to construct?  How does 
one identify an architectural element uniquely? 

To approach the first issue above, we employed the use of an abstraction I first used when 
describing the DARPA EDCS program’s legacy to DASADA principal investigators [Wile ‘00] 
(see attachment).  In particular, there seem to be four levels of specification of architecture 
present to varying degrees in ADLs and their support technologies: 

• Core (Syntactic) 

• Constrained (Type checked) 

• Completed (Analyzed) 

• Reflective (2nd Order Representation) 

These levels correspond to successively deeper levels of commitment to representations and 
tools.  In the protocols studied, the issue was to come up with a representation of events that 
construct only the core architectural elements - connectors, components, attachments, groups and 
their syntactic substructure and properties.  Of course, there are some elements of the constrained 
level as well, but the type checking activity itself occurs outside of these protocols.  The 
completed layer refers to analyses that can occur only after one claims to have specified all of the 
information needed to reason effectively.  For example, one cannot hope to reason about 
performance if an arbitrary component may still be added to the architecture, perhaps connected 
between two existing components.  Aspects of reflective capabilities are already in the protocols 
described: xAcme’s newProperty and xADL’s element-types are of this nature. 

To consider the issues above in more depth, it might also help to constrain the protocols to suit 
the DASADA infrastructure depicted in Figure 1.  This would be a secondary goal, if a more 
general solution is satisfactory, but e.g. one might be able to assume that the architecture was 
type-correct by construction of the probes that monitor the system.  One could assume that some 
aspects of analyzed were true by construction as well.  For example, security properties may be 
guaranteed by a wrapper technology despite component volatility. 

The following were points of discussion toward resolving the issues above during the Self-
Healing Systems Conference in Charleston, SC [Wile ‘02], although the time allotted for 
discussion was too short to come to any firm conclusions.  Again, funding for DASADA Phase II 
was intended to resolve these issues. 

Proposal Goals. It would seem wise to look ahead to the constrained and completed levels of 
representation to see how to handle some of the issues that arise already at the low level, even if 
we do not intend to support them.  However, I actually believe a modicum of support for both 
levels can be provided as well. 

Nomenclature Issues and Different Representations. I believe agreement at the level of a 
common API should be sought.  The Probe Infrastructure Proposal of DASADA [1] was 
developed as an API for events that manage sets of probes called configurations.  The important 
aspect of that proposal here is that various underlying technologies can be used to implement the 
substrate supporting the API. 

I can imagine doing the same here, using what the probe infrastructure called “adapters” to allow 
interoperation between various actual dialects used to implement the API.  In any case, a shared, 
abstract syntax-based API design seems appropriate.  That way we can call an attachment a link 
or a beginConnect with impunity at the substrate level, but talk uniformly with one another at the 
abstract level.  
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Language Richness. I believe the adapters could be used to ameliorate this as well, but only to 
the extent that we disagree!  The point is that the higher the level we can agree to use in the 
common API, the better off we are for enhancing sharing and functionality.  I personally believe 
that named type-equivalence should be built into the protocol, but I expect some resistance from 
the xAcme/xARCH camp. 

I would also propose to extend the language to facilitate some of the reasoning used in Armani 
[Monroe] and Dynamic Acme [Wile ‘01c], where architecture “closedness” is important: an 
architecture description characterizes all possible architecture instances - the “proto-architecture” 
- while running instances inform of the choices made within that space.  Strong analogies 
between the Probe Infrastructure API for “installing” configurations versus “activating” them 
exist in almost all dynamic architecture descriptions.  In order to give some support for the 
constrained and completed layers, it would seem important to carry that distinction over into the 
ASE protocols as well. A simple starting proposal here is to add an “activated” or “identified” 
event to the protocol that can be used to indicate the dynamic status of architecture elements. 

Transaction Model.  That proposal almost requires that a transaction model be incorporated (or 
at least, permitted).  It may even argue for a two phase transaction, one in which the proto-
architecture is instantiated and the other for dynamic activations.  It should be noted that indeed 
this idea is allowing the dynamic introduction of reflective knowledge in the system, something 
shown to be important to a system as simple as the Probe Configuration Manager itself. 

The API could allow transactions as well as grouping constructs and perhaps even atomic 
sequences, as represented by the change operator, i.e. allow the union of these facilities found in 
the current protocols instead of just choosing one.  I believe that the API design might not need to 
be implemented in its entirety by every adapter; we could register those features an adapter 
supports and not utilize the adapter when it proves to be insufficient, for example.  However, this 
is an issue for discussion as well. 

Extraneous Information.  I believe the model of the dynamic architecture created by the ASEs 
should be uniquely determinable up to isomorphism of textual identifiers and strings.  The 
xAcme/xARCH and the Design Editor protocols are closer to this than the xADL, but some work 
is needed to establish this with any of them.  Architectural element identity will probably be a 
tricky issue.  Hopefully, it will not require anything as heavy-handed as the use of urls, for 
example. 

 

Key Personnel 
In addition to the project’s two Principal Investigators, Robert M. Balzer and David S. Wile, 
Alexander Egyed participated in the project as developer of the Simulation tool used in the 
dynamic architecture self-healing gauge.  Neil Goldman assisted in the development of the Probe 
wrapper tools that implemented the Probe Infrastructure Specification. 

Key Trips and Presentations 
Both David S. Wile and Robert M. Balzer attended all DASADA PI meetings and the so-called 
“Demo Days” meetings, where results were presented to the wider Washington, D.C. community. 

DASADA Kick-off meeting.  Santa Fe. 7/11/00-7/14/00 David Wile gave a presentation 
entitled: “The EDCS Architecture Legacy” (see attachment). 
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PI Meeting. Monterey 1/31/01-2/2/01. Robert Balzer presented the probe infrastructure 
proposal. 

Demo Days. Baltimore. 6/4/01-6/8/01. Robert Balzer, Alexander Egyed, and David Wile 
demonstrated an early version of the Safe Email program en-gaugement using the PowerPoint 
Design Editor on a Probe Architecture Style representation (see attachment). 

PI assembly. Brisbane. 12/15/01. David Wile and Robert Balzer attended in conjunction with 
the Working Conference on Complex and Dynamic Systems Architecture (see below). 

Infrastructure meeting. Stanford Research Institute. 3/18/02. David Wile attended and 
presented an example using Dynamic Acme (from the working conference). 

Demo Days. Baltimore. 7/1/02-7/4/02.  David Wile and Robert Balzer attended and presented 
the demo entitled: Architectural Gauges (see the DASADA Brochure and other 2002 
PowerPoint presentations in the attachments). 

Phase II planning meeting. Arlington. 7/23/02-7/24/02. David Wile attended and supported 
the consolidated proposal (see Figure 1 ff.). 

 

David Wile had a paper entitled “Modeling Architecture Description Languages using AML” 
accepted to the Journal of Automated Software Engineering. 8: 2001. 63-88 [Wile ‘01b] (see 
attachment), with the following abstract: 

The language AML was designed to specify the semantics of architecture description 
languages, ADLs, especially ADLs describing architectures wherein the architecture itself 
evolves over time.5  Dynamic evolution concerns arise with considerable variation in time 
scale.  One may constrain how a system may evolve by monitoring its development lifecycle. 
Another approach to such concerns involves limiting systems’ construction primitives to 
those from appropriate styles. One may wish to constrain what implementations are 
appropriate; concerns for interface compatibility are then germane.  And finally, one may 
want to constrain the ability of the architecture to be modified as it is running. AML attempts 
to circumscribe architectures in such a way that one may express all of these constraints 
without committing to which time scale will be used to enforce them.  Example AML 
specifications of the C2 style and Acme are presented. 

Alexander Egyed attended the Working IEEE/IFIP Conference on Software Architecture (8/01, 
Amsterdam) and presented a paper entitled “Statechart Simulator for Modeling Architecture 
Dynamics” [Egyed and Wile] (see attachment) with the following abstract: 

Software development is a constant endeavor to optimize qualities like performance and 
robustness while ensuring functional correctness. Architecture Description Languages 
(ADLs) form a foundation for modeling and analyzing functional and non-functional 
properties of software systems, but, short of programming, only the simulation of those 
models can ensure certain desired qualities and functionalities. 

This paper presents an adaptation to statechart simulation, as pioneered by David Harel. This 
extension supports architectural dynamism – the creation, replacement, and destruction of 
components. We distinguish between design-time dynamism, where system dynamics are 
statically proscribed (e.g., creation of a predefined component class in response to a trigger), 
and run-time dynamism, where the system is modified while it is running (e.g., replacement 

                                                      
5 This work was sponsored by the Defense Advanced Research Projects Agency under contract 
nos. MDA903-87-C-0641, DABT63-91-K-0006, and F30602-96-2-0224. 
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of a faulty component without shutting down the system). Our enhanced simulation language, 
with over 100 commands, is tool-supported. 

David Wile attended the Requirements Engineering (8/27/01-8/31/01, Toronto) conference and 
presented the paper entitled: “Residual Requirements and Architectural Residues” [Wile ‘01a] 
(see attachment) who’s abstract is: 

Monitoring running systems is a useful technique available to requirements engineers, to 
ensure that systems meet their requirements and in some cases to ensure that they obey the 
assumptions under which they were created.  This report studies relationships between the 
original requirements and the monitoring infrastructure.  Here we postulate that the monitored 
requirements are in fact just compilations of original requirements, called “residual” 
requirements.  

Dynamic architectural models have become important tools for expressing requirements on 
modern distributed systems.  Monitoring residual requirements will be seen to involve 
“architectural residues,” skeletal run-time images of the original logical architecture. An 
example sales support system is used to illustrate the issues involved, employing modest 
extensions to the Acme architecture description language to reason about architectural 
dynamism. 

David Wile attended the Working Conference on Complex and Dynamic Systems Architecture 
(12/9/01 – 12/11/01, Brisbane, Australia) and presented a paper entitled “Using Dynamic Acme” 
[Wile ‘01c] (see attachment) with the following abstract: 

Dynamic architectural models have become important tools for expressing requirements on 
modern distributed systems.  I previously identified “architectural residues,” skeletal run-time 
images of the original logical architecture, as important reflective models to be maintained in 
monitoring that running systems meet dynamic requirements.  Several years ago I proposed 
modest extensions to the Acme architecture description language to express aspects of, and 
reason about, architectural dynamism.  Herein these extensions are made more precise; an 
example illustrates role use in inserting probes and gauges into systems. 

David Wile attended the Workshop on Self-healing Systems (WOSS, 11/18/02- 11/19/02, 
Charleston, S.C.), and presented the paper [Wile ‘02] (see attachment) with the following 
abstract: 

Self-healing systems generally require reflective models of their own operation to determine 
what aspects of themselves they can change to effect repair.  Architecture models are 
examples of rather simple models to which health information can be attached and reasoned 
about, e.g. attaching system state to a process or tracking events across connectors.  These 
models are especially useful when the architecture of the system varies while the system is 
running, in so-called “dynamic architectures.”  

DARPA’s DASADA program is developing an architecture-based infrastructure for self-
healing, self-adapting systems.  Herein several protocols for dynamic architecture change 
notification from that program are examined in search of a community standard for such a 
protocol.  Desirable properties of such protocols are suggested based in part on how much 
constraint checking will be used to proscribe dynamic architecture building activity.  Points 
for discussion are raised. 

David Wile attended the Conference on Automated Software Engineering (ASE, 10/6/03-10/10-
03, Montreal) and presented the short paper entitled “Calculating Requirements: an Approach 
Based on Architecture Style” [Wile ‘03] (see attachment) with the following abstract: 
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Engineers wield various “calculi” to help determine solutions to their problems, calculation 
tools varying in power from tensile strength tables to the differential calculus.  Software 
engineers sometimes use domain-specific languages that provide calculi for their tasks, for 
domains as varied as music composition, control system design, and parsing.  The idea here is 
to explore what it would mean to provide calculi for requirements engineers to aid them in 
solving their problems.  An approach to designing such calculi is presented that is based on 
the use of architecture styles.  An example calculus based on the model / view / controller 
architecture style is sketched to demonstrate that rules for manipulating these architectural 
elements can aid in requirements “calculation.”  

David Wile and Alexander Egyed had a short paper accepted to the Working IEEE/IFIP 
Conference on Software Architecture (to be held 6/13/04-6/15/04, Oslo) entitled “An 
Externalized Infrastructure for Self-Healing Systems” [Wile and Egyed] (see attachment) with the 
following abstract: 

Software architecture descriptions can play a wide variety of roles in the software lifecycle, 
from requirements specification, to logical design, to implementation architectures.  In 
addition, execution architectures can be used both to constrain and enhance the functionality 
of running systems, e.g. security architectures and debugging architectures.  Along with 
others from DARPA’s DASADA program we proposed an execution infrastructure for so-
called self-healing, self-adaptive systems – systems that maintain a particular level of 
healthiness or quality of service (QoS).  This externalized infrastructure does not entail any 
modification of the target system – whose health is to be maintained.  It is driven by a 
reflective model of the target system’s operation to determine what aspects can be changed to 
effect repair.  Herein we present that infrastructure along with an example implemented in 
accord with it. 

In addition, both David S. Wile and Robert M. Balzer attended several conferences, workshops, 
and IFIP working group meetings (WG2.1, WG2.2 and WG2.9) where the DASADA efforts were 
reported and discussed enthusiastically. 

DASADA Community Relationships 
The DASADA community was considerably more aware of what others were doing in related 
areas than most DARPA programs that these authors have been a part of.  Several ad hoc working 
groups were formed to establish community consensus in areas of common concern.  The topics 
of these included: run-time infrastructure and the common extensible design notations groups as 
well as others with which we were less involved (such as effectors). 

Run-Time-Infrastructure Working Group (Probes) 
Bob Balzer (Teknowledge) was the chairman of the committee to develop the probe infrastructure 
specification and was the author of the strawman proposal that was ultimately adopted by the 
group.  Several members developed tools that conformed to it, including Teknowledge Corp. 
(Balzer, Goldman), Colombia University (Kaiser), and OBJ (David Wells).  They decided to use 
the Siena event bus carrier mechanism along with a primitive event mechanism, awaiting a design 
by the Common Extensible Design Notations committee.  Teknowledge later substituted a secure 
transport mechanism that was consistent with the probe infrastructure for use in its 
demonstrations.  Later on, this committee began to formalize the notion of a “gauge bus” in 
parallel with the probe bus.  (See Figure 1, where both of these are evident.) 
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CEDN - Common Extensible Design Notations 
David Wile (Teknowledge) and David Garlan (CMU) were co-chairs of this committee whose 
scope broadly included most issues of specifications, specifically architecture styles and 
constraint specification, broad-based architectural interchange, architectural dynamism, and event 
specifications.  For specifying architectural styles and especially, constraints, some community 
consensus was arrived at using the language Armani [Monroe], developed at CMU by Bob 
Monroe.  Irvine’s xADL group [van der Hoek and Dashofy] influenced the Acme development of 
xARCH [Schmerl], an XML-based architecture description formalism for tool interchange.  
David Wile’s proposal for dynamic Acme [Wile ‘01c] was accepted for describing dynamism in 
Acme, but funding ran out before significant retooling of the Acme Tool Suite could be done to 
make use of the specifications.  Event specification was never agreed upon completely, primarily 
because concerns for what should constitute a transaction were never wrung out, but David Wile 
(Teknowledge) proposed a unified approach to describing architecturally significant events [Wile 
‘02] (see attachment).  Again, this proposal would almost certainly have been adopted had the 
DASADA Phase II follow-on been funded. 

Technology Transfer 
The key technology developed under DASADA funding that was ready for transfer is the Probe 
bus technology.  This was mature enough to be used on multiple platforms, as we illustrated in 
the Safe Email application.  Unfortunately, most DASADA community members are not running 
Windows-based platforms, so even beta testing in the community was impossible, let alone 
finding real customers. 

But the primary problem with transferring even the probe technology was the lack of an over-
arching framework such as that proposed in the DASADA Phase II follow-on.  The use of probes 
in isolation from this framework makes little sense.  Had the architecture model-based 
infrastructure demonstrated in the Safe Email reformulation (described above) matured as 
projected in that follow-on proposal, the technology would be much more attractive to users 
requiring less technical savvy than the potential customers of the current technology would need. 
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